SHENCAI PIGMENT

Since 1983

Specialized in Manufacturing

Synthetic Iron Oxide-Yellow, Green, Red, Black, Blue, Brown & Orange

Factory:SHIJIAZHUANG SHENCAI PIGMENT FACTORY Guzhuang Village Industrial Zone,Shangzhuang Town,Luquan City,Hebei,China Phone:+86-311-82233953 Fax:+86-311-82135979 Mobile:+86-15127079998 E-mail: smyl@smyl.cn Website: www.ironoxideyellow.com www.smyl.cn

Iron Oxide Pigments from SHENMING Pigment

(Since 1983)

INTRODUCTION:

Having made a modest start in manufacturing of Industrial grade Micronized Synthetic Iron Oxide Pigment Powder (Yellow, Green, Red, Black, Blue, Brown, Orange). From 1983, now we are one of the affordable, consistent and good quality manufacturers of these pigments in China.

We are very successful in this field because of our well equipped infrastructure & professionally managed highly motivated techno-commercial executives with good work experience who are committed to work. Through very stringent quality control and enterprise audit procedure, we maintain good reliable and consistent quality through out the year.

The products have been well accepted through out the country, which is evident from the repeat orders we receive.

PRODUCTS:

IRON OXIDE YELLOW	IRON OXIDE GREEN
IRON OXIDE RED	IRON OXIDE BLACK
IRON OXIDE BLUE	IRON OXIDE BROWN
IRON OXIDE ORANGE	CHROME OXIDE GREEN

QUALITY FEATURES:

High Tinting Strength, Clean Shades, Good dispersion, UV Stable, Weather Resistant, Light Fast, Acid Resistant, Permanent Stable Color, Brightness & Heat Stable.

PACKING:

The products are packed in Net weight 25 kg in paper bag or knitting bag outside ,plastic bag inside.

APPLICATION:

Our products have a wide application in Paints, Coatings (Decorative,protective & Surface Coating),Colorants, Synthetic Enamels,Porcelain Enamels,Primers,Wood Primers, Dry Disremper,Cement Paints,Adhesives,Cement Flooring,Vinyl Flooring,Designer Tiles,Paving blocks.Concrete application. Construction,Cement Colors,Mosaic Tiles,Ceramics,Plastic(Plastics Asphalt) PVC,Rubber products,Paper,Crayons,Leather,Glazes,Dadoes,Plaster works. Elastomers,Textile,Inks,Fiber,glass polishing, metal polishing, Rouge polishing,optical lens,linoleum etc...

RESPONSIBILITY TO ENVIRONMENT:

Using "PRECIPITATION METHOD", we manufacture iron oxide in a Eco-Friendly manner & committed to Safety, Health & Environment.

We comply with all environment factors as prescribed by plllution control board,govt,of tamil nadu.

PRODUCT FEATURES:

The product consists of Synthetic oxides of iron by chemical reactions and shall be free from salts and impurities to give good shade and strength. The color shall be entirely due to inorganic compouds of iron and it is inert in nature.

	型号 Type	含量 Fe _i O _i	吸油量 Cil absorption (ml/100g)	篩余物 Res.on 325 mesh (%)	水溶物 Water Sol.salts (%)	水份 Moisture (%)	Ph值 PH value	Tamped apparent density g/cm ³	粒子形状 Particle shape	色差 △E compared with std	着色力 Tinting strength (%)
Iron Oxide red 氧化铁红	Y101 110 120 130 230 140 180 190	№ 96 № 96 № 96 № 96 № 96 № 96 № 96 № 95	$\begin{array}{c} 15 &\sim 25 \\ 15 &\sim 25 \end{array}$	<pre>< 0.3</pre> <pre>< 0.5</pre>	<pre><0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3</pre>	<pre>\$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0 \$\\$1.0</pre>	3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7 3-7	0.7-1.1 0.7-1.1 0.7-1.1 0.8-1.2 0.9-1.3 1.3-1.7 0.7-1.1	spherical spherical spherical spherical spherical spherical spherical	*******	95~105 95~105 95~105 95~105 95~105 95~105 95~105 95~105 95~105
Iron Oxide Yellow 氧化铁黄	311 313 586 810	≥ 286 286 286 286	25~35 25~35 25~35 25~35 25~35	≤0.3 ≤0.3 ≤0.3 ≤0.3	≪0.3 ≪0.3 ≪0.3 ≪0.3	<pre>\$\langle 1.0 \$\langle 1.0</pre>	3~7 3~7 3~7 3~7 3~7	0.4-0.6 0.4-0.6 0.4-0.6 0.4-0.6	acicular acicular acicular acicular	%1 %1 %1	95~105 95~105 95~105 95~105 95~105
Iron Oxide Black 氧化铁黑	318 330 740 750	≥92 ≥92 ≥93 ≥93	15~25 15~25 15~25 15~25 15~25	≪0.4 ≪0.4 ≪0.4 ≪0.4	<pre>≤0.5</pre> <pre>≤0.5</pre> <pre>≤0.5</pre> <pre>≤0.5</pre>	<pre>\$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0</pre>	5~8 5~8 5~8 5~8	0.8-1.2 0.8-1.2 0.9-1.3 0.8-1.3	spherical spherical spherical spherical	∜1 ∜1 ∛1	95~105 95~105 95~105 95~105 95~105
Iron Oxide Brown 氧化铁棕	610 663 686 841	≫90 ≫90 ≫90 ≫88	25~35 20~30 15~25 25~35	≪0.3 ≪0.4 ≪0.5 ≪0.3	≪0.5 ≪0.5 ≪0.5 ≪0.5	<pre>\$\% 1.0 \$\% 1.0</pre>	4~7 4~7 4~7 4~7	0.7-1.1 0.8-1.2 0.8-1.2 0.7-1.1	irregular irregular irregular irregular	∜1 ∛1 ∛1	95~105 95~105 95~105 95~105 95~105
Iron Oxide Orange 氧化铁橙	270 960 2040	≥88 ≥88 ≥88	20~30 20~30 20~30	≤0.3 ≤0.3 ≤0.4	≪0.5 ≪0.5 ≪0.5	≤1.0 ≤1.0 ≤1.0	4~7 4~7 4~7	0.7-1.1 0.7-1.1 0.8-1.2	irregular irregular irregular	≤1 ≤1 ≤1	95~105 95~105 95~105
Compound Ferric Green 复合铁绿	5605 835		25~35 25~35	≤0.5 ≤0.5	≤2.5 ≤2.5	≤1.0 ≤1.0	≥6.0 ≥6.0	0.4-0.8 0.4-0.8	irregular irregular	≤1 ≤1	95~105 95~105
Compound Oxide Green 氧化铬绿	GX	≥99 (CrįO ₃)	10~25	≪0.3	≤0.3	≤0.3	5~8	1.0-1.3	spherical	≤1	95~105

Whilst all reasonable care has been taken in the brochure, the technical data is given in good faith. Our advice is only for your reference, and doesn't release you from the obligation to test and determine the suitability for your processes and applications. The application and processing of our products and the products manufactured by you are beyond our control and therefore, entirely your own responsibility, no warranty or guarantee is given by us.

本文的技术资料是出于诚意所提供的。我们的信息仅供参考,需要由您自己测试并决定是否适合您的用途。对我们产品的应用和处理,以及您制造 的最终产品都处于我们的控制之外,我们无法承担保证和义务。